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Large eddy simulation of a circular jet:
effect of inflow conditions on the near field
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In the present study, the effects of the jet inflow conditions such as the initial
momentum thickness (θ) and background disturbances on the downstream evolution
of a circular jet are investigated using large eddy simulation (LES). We consider
four different initial momentum thicknesses, D/θ = 50, 80, 120 and 180, and three
different Reynolds numbers, ReD = UJ D/ν = 3600, 104 and 105, where UJ is the
jet inflow velocity and D is the jet diameter. The present study shows that the jet
characteristics significantly depend on both the initial momentum thickness and the
Reynolds number. For all the Reynolds numbers considered in this study, vortex rings
are generated at an earlier position with decreasing initial momentum thickness. In
case of a relatively low Reynolds number of ReD = 3600, at smaller initial momentum
thickness, early growth of the shear layer due to the early generation of vortex ring
leads to the occurrence of large-scale coherent structures in earlier downstream
locations, which results in larger mixing enhancement and more rapid increase in
turbulence intensity. However, at a high Reynolds number such as ReD = 105, with
decreasing initial momentum thickness, rapid growth of the shear layer leads to the
saturation of the shear layer and the generation of fine-scale turbulence structures,
which reduces mixing and turbulence intensity. With increasing Reθ (= UJ θ/ν),
the characteristic frequency corresponding to the shear layer mode (Stθ = f θ/UJ )
gradually increases and reaches near 0.017 predicted from the inviscid instability
theory. On the other hand, the frequency corresponding to the jet-preferred mode
(StD = f D/UJ ) varies depending on ReD and D/θ . From a mode analysis, we show
that, in view of the energy of the axial velocity fluctuations integrated over the radial
direction, the double-helix mode (mode 2) becomes dominant past the potential core,
but the axisymmetric mode (mode 0) is dominant near the jet exit. In view of the
local energy, the disturbances grow along the shear layer near the jet exit: for thick
shear layer, mode 0 grows much faster than other modes, but modes 0–3 grow almost
simultaneously for thin shear layer. However, past the potential core, the dominant
mode changes from mode 0 near the centreline to mode 1 and then to mode 2 with
increasing radial direction regardless of the initial shear layer thickness.
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Control Research, Institute of Advanced Machinery Design, Seoul National University, Seoul
151-744, Korea.
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1. Introduction
The jet is a typical flow phenomenon encountered in various engineering

applications such as mixing, heating/cooling, printing and propulsion. Especially,
the circular jet is a flow commonly observed in many industrial devices. Therefore, a
clear understanding of mixing and noise generation mechanism of the circular jet is
of practical concern. Also, the initial development of the circular jet is considered as
one of the representative free shear flows.

The important features of the jet such as mixing and noise generation are
closely associated with the development of turbulence generated from the jet. It
has been reported that the jet development is very sensitive to jet inflow conditions
characterizing the evolution of the initial shear layer (Bradshaw 1966; Hill, Jenkins &
Gilbert 1976), and the mixing and noise generation also significantly depend on them
(Mi, Nobes & Nathan 2001; Bogey & Bailly 2005). Therefore, understanding the
effect of the jet inflow conditions is critical in predicting and controlling the jet flow.

Crow & Champagne (1971) showed that coherent structures appear past the
potential core and have the characteristic frequency called the jet-preferred mode.
After this important finding, many studies have shown that turbulent jet flows
consist of large-scale coherent structures and fine-scale turbulence motions, and these
coherent structures dominate the dynamics and mixing of a jet (see, for example,
Yule 1978; Hussain 1983, 1986). Hence, to understand the effect of the jet inflow
conditions, their effect on the vortical evolution should be investigated.

Hussain & Zedan (1978a, b) first systematically investigated the effect of the jet
inflow conditions such as the momentum thickness (D/θ = 180 − 700) and
disturbances on the jet evolution, where θ is the jet initial momentum thickness (see
§ 2 for the definition of θ) and D is the jet diameter. They found that the distance
to reach self-preservation depends on both the initial momentum thickness and the
initial disturbance level, but the spread rate, similarity parameter and peak turbulent
intensity in the self-preserving region are changed by the initial disturbances more
than by the jet momentum thickness. However, the disturbance level used in their
study was quite high (about 5% of the jet inflow velocity).

Gutmark & Ho (1983) reported that various values of the jet-preferred-mode
frequency in the literature are attributed to different inflow conditions. According
to the data summarized by Gutmark & Ho, the jet-preferred-mode frequency
normalized by the jet inflow velocity UJ and the jet diameter D has a tendency
to approach a constant value of about 0.42 (Drubka 1981) or 0.45 (Kibens 1981) as
the Reynolds number becomes large. These studies indicated that the jet-preferred
mode or formation of coherent structures is related to the evolution of the shear layer
characterized by the jet inflow conditions. However, the detailed relation of the jet
inflow conditions to the jet-preferred-mode frequency has not been fully resolved yet.

Russ & Strykowski (1993) investigated the influence of the jet momentum thickness
on the jet mixing at ReD (= UJ D/ν) = 104, where ν is the kinematic viscosity.
They considered three different values of D/θ (48, 86 and 110) and showed that the
jet-centreline velocity for D/θ = 48 decays more slowly than those for larger values
of D/θ and less mixing occurs at smaller D/θ . The change of the jet mixing with
D/θ is caused by the fact that increasing D/θ promotes the vortex roll-up, giving
rise to the decrease of the jet potential core. Stanley & Sarkar (2000) examined the
influence of the jet inflow conditions using direct numerical simulation of a planar
jet at ReH = 3000, where H is the nozzle width of the planar jet. Similarly to
Russ & Strykowski (1993), they reported that the entrainment and jet half-width
characterizing the jet mixing increase as the jet initial momentum thickness decreases
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or the background disturbance level increases. Bogey & Bailly (2005) investigated
the effect of the inflow conditions at ReD = 4 × 105 using large eddy simulation
(LES). They also observed that transition to turbulence occurs more rapidly for
thinner momentum thickness (i.e. larger D/θ), resulting in the increase of the jet
mixing. Therefore, it appears from these studies that the jet mixing has a tendency
to increase with decreasing initial momentum thickness. However, the ranges of the
inflow conditions considered in the previous numerical studies are quite different from
those in the experiments. For example, in Stanley & Sarkar and Bogey & Bailly, the
values of D/θ are around 50, but most of the values reported in the experiments are
over 100 (Hussain & Zedan 1978a, b; Russ & Strykowski 1993). As mentioned in
Bodony & Lele (2005), the evolution of thick initial shear layer may be quite different
from that of thin initial shear layer. Therefore, it should be interesting to see if the
results of Stanley & Sarkar and Bogey & Bailly are still valid in the cases of the
inflow conditions close to experimental values.

For the reasons mentioned above, our understanding of the effect of the jet inflow
conditions remains unclear, although there exist quite a few investigations addressing
this issue. Therefore, in the present study, we investigate the effect of the initial
momentum thickness of jet inflow velocity on the jet evolution at ReD = 3600, 104

and 105 using LES. We consider four different jet initial momentum thicknesses,
D/θ = 50, 80, 120 and 180. The computational details are described in § 2, where
the jet inflow conditions such as the initial momentum thickness and background
disturbance are provided. The effects of the jet momentum thickness on the vortical
structures and turbulence statistics are presented in § 3.1, followed by a discussion
regarding the temporal and spatial instability modes in §§ 3.2 and 3.3, respectively.
Finally, conclusions are given in § 4.

2. Computational details
The filtered governing equations of an unsteady incompressible viscous flow for

LES are

∂ũi

∂t
+

∂ũi ũj

∂xj

= − ∂p̃

∂xi

+
1

ReD

∂2ũi

∂xj∂xj

− ∂τ ij

∂xj

, (2.1)

∂ũi

∂xi

= 0, (2.2)

where xi are the coordinates, ũi are the corresponding filtered velocity components,
p̃ is the filtered pressure and ReD denotes the Reynolds number. The subgrid-scale
(SGS) stress tensor, τ ij = ũiuj − ũi ũj , is modelled using the dynamic SGS model by
Germano et al. (1991), together with the least-square method suggested by Lilly (1992).

We solve (2.1) and (2.2) in the cylindrical coordinate system using a semi-implicit
fractional-step method proposed by Akselvoll & Moin (1996). The computational
domain is decomposed into core and outer regions. Within each region only the
derivatives in one direction, i.e. the derivatives in the azimuthal direction within the
core region and those in the radial direction within the outer region, are treated
implicitly, and other derivatives are treated explicitly. The Crank–Nicolson method
is used for the implicit terms and a third-order Runge–Kutta method is used for the
explicit terms. Also, the second-order central difference scheme is employed for all
the spatial derivative terms.

Figure 1 shows the schematic diagram of the computational domain used in this
study. Here, x, r and φ denote the axial, radial and azimuthal directions, respectively.
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Figure 1. Schematic diagram of the computational domain and boundary conditions.

As shown in figure 1, the Neumann condition, ∂ui/∂x = 0, is imposed on the side
of the inlet boundary (x = −Li) and the outflow boundary (x = Lx − Li). At the jet
inflow (x = 0, r � D/2), a Dirichlet boundary condition is applied and the detail of
the jet inflow condition is given in the paragraph below. At the far-field (r = Lr ),
∂(rur )/∂r = 0 and ωx = ωφ = 0 are given, where ω = (ωx, ωr, ωφ) is the vorticity
vector. As shown in figure 1, we locate the jet exit inside the computational domain
because this configuration allows natural entrainment from the side of inlet boundary
(x = −Li). A similar approach was taken by Babu & Mahesh (2004).

As the jet inflow condition, we give a constant velocity UJ in the jet core region and
a laminar Blasius profile near the wall (figure 2a), as observed in previous experimental
studies (Hussain & Zedan 1978a; Russ & Strykowski 1993; Cho, Yoo & Choi 1998).
We consider four different momentum thicknesses of the boundary layer covering a
relatively wide range of shear layer thickness: D/θ = 50, 80, 120 and 180. The jet

initial momentum thickness θ is defined as
∫ D/2

0
Ux

UJ
(1 − Ux

UJ
)|x=0 dr . Here, we used the

definition of momentum thickness for planar geometry assuming that the shear layer
is thin relative to the jet exit diameter. When we consider the geometry effect, the

jet initial momentum thickness may be defined as θ∗ = 2
D

∫ D/2

0
Ux

UJ
(1 − Ux

UJ
)|x=0 r dr .

Following this definition, D/θ∗ ≈ 57, 87, 126 and 186, respectively, for D/θ = 50,
80, 120 and 180. The jet evolution should depend on the Reynolds number as well as
the initial momentum thickness because both are the critical parameters for the shear
layer instability. Therefore, we consider four different Reynolds numbers, ReD = 100,
3600, 104 and 105, covering both laminar and turbulent jets. LESs are conducted for
ReD = 3600, 104 and 105. When ReD � 105, the jet inflow condition exhibits laminar
characteristics, but it becomes turbulent as the Reynolds number is further increased
(Crow & Champagne 1971; Zaman 1985).

In most experimental set-ups, background disturbances exist at the jet exit and the
jet characteristics are sensitive to a slight change in those disturbances. In the present
study, we generate a background disturbance at the jet exit using the method by Lee,
Lele & Moin (1992), assuming that the same type of disturbances exists both in the
jet core region and inside the laminar boundary layer near the wall. As shown in
figure 2(b), we construct the background disturbance such that its frequency spectrum
consists of the Kolmogorov spectrum in the inertial region and the Pao spectrum
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Figure 2. Jet inflow conditions: (a) axial velocity profiles: ———, D/θ = 50; – – – –, 80;
· · · · · · ·, 120; — · —, 180; (b) energy spectrum of the background disturbance. Here f is the
frequency.

ReD D/θ Domain size Number of grid points

100 50, 80, 120, 180 −3.6 < x/D < 30, r/D < 14, 0 � φ < 2π 337(x) × 214(r) × 32(φ)
3600 50, 80, 120, 180 −3.6 < x/D < 40, r/D < 7, 0 � φ < 2π 337(x) × 132(r) × 64(φ)
104 50, 80, 120, 180 −3.6 < x/D < 30, r/D < 7, 0 � φ < 2π 449(x) × 132(r) × 128(φ)
105 50, 80, 120, 180 −3.6 < x/D < 18, r/D < 7, 0 � φ < 2π 545(x) × 132(r) × 128(φ)

Table 1. Computational domain sizes and numbers of grid points.

in the dissipation region, respectively (Pope 2000). The background disturbance is
randomly distributed in space at the jet exit, and the amplitude (r.m.s. value) of the
background disturbance is set to be uJ = 0.001UJ at ReD = 100, 3600 and 104, and
uJ = 0.003UJ at ReD = 105, respectively, following the experimental conditions by
Russ & Strykowski (1993) and Crow & Champagne (1971).

The computational domain sizes and the numbers of grid points for all the cases
are given in table 1. To resolve a large velocity gradient inside the shear layer, non-
uniform grids are distributed in the axial and radial directions. In the radial direction,
grids are clustered in the shear layer (near r/D = 0.5), e.g. at least 10 grid points are
located inside the initial shear layer at the jet exit. To accurately predict the shear
layer evolution near the jet exit, the grids are clustered at the jet exit in the axial
direction: for instance, at ReD = 105, the grid sizes distributed from the jet exit to
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(a)

(b)

Figure 3. Instantaneous vortical structures at ReD = 105 and D/θ = 180: (a) without and (b)
with the background disturbance (uJ = 0.003UJ ) at the jet exit. Shown here are the iso-surfaces
of pressure, p/ρU 2

J = −0.03.

nearly the end of the potential core (i.e. x/D � 4) range from �x/D = 0.00833 to
0.03. Uniform grids are distributed in the azimuthal direction.

To examine the validity of the background disturbance provided at the jet exit, LESs
are performed in the case of ReD = 105 and D/θ = 180 with and without the disturb-
ance. Figure 3 shows the instantaneous vortical structures for both cases. As shown, the
initial growth of the shear layer is very different between two cases although the amp-
litude of the disturbance is fairly small; the disturbance generates small-scale vortex
rings in the vicinity of the jet exit, whereas larger vortex rings are observed without the
disturbance. As shown in figure 4, the present results (mean and fluctuation velocities)
from LES with the disturbance agree very well with the experimental ones, indicating
the adequacy of numerical parameters chosen in the present numerical simulation (see
also figures 8 and 9 later in this paper). With the disturbance, the velocity fluctuations
grow more rapidly very near the jet exit than those without the disturbance (see the in-
set in figure 4b). This earlier growth of shear layer produces smaller-scale vortex rings
and earlier saturation of turbulence, resulting in smaller r.m.s. values and larger mean
centreline velocity in downstream locations (figure 4). Further discussion on the effect
of the background disturbance on the jet evolution is given in Appendix A. Unless
otherwise specified, the results shown in this paper are obtained with the disturbance.

The discussions on the computational aspects concerning the quality of grid
resolution and the applicability of the LES technique to the study of Reynolds-
number dependence are given in Appendix B.

3. Results and discussion
3.1. Vortical structure and near-field statistics

Figures 5–7 show the variations of vortical structures with the jet initial momentum
thickness for ReD = 3600, 104 and 105, respectively. As shown, the evolution of
vortical structures significantly depends on both the Reynolds number and the jet
momentum thickness. For all the cases shown here, the shear layer in the vicinity of
the jet exit becomes unstable due to the Kelvin–Helmholtz instability and rolls up
into vortex rings downstream. For ReD = 3600 (figure 5), with increasing D/θ , the
vortex rings form earlier and thus large-scale vortical structures occur earlier through
vortex pairing. On the other hand, when ReD and D/θ become sufficiently large
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Figure 4. Evolutions of the mean and r.m.s. axial velocities at ReD = 105 and D/θ = 180:
(a) mean velocity along the centreline; (b) r.m.s. velocity fluctuations along the shear layer
(r = 0.45D). ———, with the disturbance (uJ = 0.003UJ ); – – – –, without the disturbance; •,
Crow & Champagne (1971) (ReD ≈ 105, D/θ ≈ 600 and uJ ≈ 0.003UJ ; in (b), r/D ≈ 0.5); �,
Sami, Carmody & Rouse (1963) (ReD ≈ 2.2 × 105; in (b), r/D ≈ 0.5).

(e.g. at ReD = 105 and D/θ = 180), the shear layer in the vicinity of the jet exit is
very thin and becomes rapidly unstable. This early growth of the shear layer leads
to the saturation of the shear layer, resulting in the promotion of fine-scale vortical
structures in downstream locations (figure 7d ). As a result, a gradual inhibition of
energetic large-scale structures with increasing D/θ is observed for ReD = 104 and
105 in figures 6 and 7, respectively. The promotion of fine-scale structures from the
saturation of the shear layer was previously observed by Zaman & Hussain (1981)
from an excitation at a non-dimensional frequency of Stθ = f θ/UJ = 0.017.

Since the evolution of vortical structures is closely associated with jet mixing, the jet
inflow condition such as the jet momentum thickness should be an important factor
determining jet mixing. Figure 8 shows the variations of the mean axial velocity along
the centreline for different ReD and D/θ , together with previous experimental results.
The jet-centreline velocity is regarded as one of the indices representing the degree
of jet mixing. The flow is steady at ReD = 100 but is unsteady at other Reynolds
numbers. As shown in this figure, the present simulation results show excellent
agreements with those by Crow & Champagne (1971), Zaman & Hussain (1981)
and Cho et al. (1998), and a reasonable agreement with those by Russ & Strykowski
(1993). For ReD = 100 (steady laminar flow), the jet-centreline velocity decays more
rapidly at lower D/θ through the molecular diffusion. At high Reynolds numbers at
which the flows are unsteady, the interaction between the vortical structures and the
ambient flow plays an important role in jet mixing. For ReD = 3600, the jet-centreline
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Figure 5. Instantaneous vortical structures at ReD = 3600: (a) D/θ = 50; (b) 80; (c) 120;
(d) 180. Shown here are the iso-surfaces of pressure, p/ρU 2

J = −0.03.

velocity decreases more rapidly at higher D/θ (figure 8b). This more rapid decay at
higher D/θ is attributed to the earlier occurrence of large-scale structures as shown
in figure 5. On the contrary, for ReD = 105, the jet-centreline velocity decreases more
slowly at higher D/θ (figure 8d ). This is because at higher D/θ earlier saturation
of the shear layer instability results in fine-scale vortical structures at downstream
locations and decreases jet mixing. The reduction of jet mixing due to the promotion
of fine-scale vortical structures was reported by Zaman & Hussain (1981). For
ReD = 104 (figure 8c), the variation of the jet-centreline velocity with D/θ shows an
intermediate behaviour between those for ReD = 3600 and 105. That is, at low D/θ

(� 80 − 120), the jet-centreline velocity decreases more rapidly with increasing D/θ ,
but it decreases more slowly with increasing D/θ at high D/θ (� 80 − 120). This
behaviour is consistent with the vortical evolutions shown in figure 6.

Figure 9 shows the variations of the r.m.s. axial velocity fluctuations along the
centreline for ReD = 3600, 104 and 105, together with previous experimental results.
The present results show good agreements with the experimental data. Again, the
jet inflow condition significantly changes the evolution of the r.m.s. axial velocity
fluctuations. For ReD = 3600, the r.m.s. axial velocity fluctuations grow more quickly
at higher D/θ . In contrast, the r.m.s. axial velocity fluctuations for ReD = 105 increase
much more slowly at higher D/θ due to the early saturation of the shear layer (see
the inset in figure 9c), as mentioned earlier. For ReD = 104, the variation in D/θ

shows a mixed behaviour between those for ReD = 3600 and 105.
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Figure 6. Instantaneous vortical structures at ReD = 104: (a) D/θ = 50; (b) 80; (c) 120;
(d) 180. Shown here are the iso-surfaces of pressure, p/ρU 2

J = −0.03.

3.2. Instability modes

There exist two different flow instability modes in a jet: one is the shear layer mode
that is associated with a high-frequency oscillation due to the shear layer roll-up,
and the other is the jet-preferred mode that is associated with a low-frequency
oscillation due to the evolution of large-scale coherent structures. It has been known
that the shear layer mode has a dominant frequency at Stθ = f θ/UJ ≈ 0.017 from
theoretical analyses (Michalke 1964, 1965) or at Stθ ≈ 0.012 from experimental
measurements (Zaman & Hussain 1981), whereas the jet-preferred mode ranges from
StD = f D/UJ ≈ 0.3 to 0.6 (Gutmark & Ho 1983; Ho & Huerre 1984).

Figure 10 shows the dominant frequencies corresponding to the shear layer mode
with different normalizations, together with those from previous experiments (Kibens
1980; Zaman & Hussain 1981; Tong & Warhaft 1994). Here, the dominant frequency
is the peak frequency in the energy spectrum of the axial velocity fluctuations along
the shear layer (r/D = 0.5). As clearly illustrated in figure 10(a), the shear layer mode
frequency (Stθ ) normalized by the initial momentum thickness shows a logarithmic
increase with Reθ (Stθ = 0.0052 × log10 Reθ + 0.00028) and then reaches near Stθ =
0.017 which is predicted from the inviscid instability theory. Here, Reθ = UJ θ/ν.

Unless D/θ is too small, the shear layer mode frequency Stθ does not significantly
depend on D/θ . The fact that Stθ at low Reθ (∼O(10)) is much lower than 0.017
is because the shear layer is greatly affected by the viscosity at low Reθ . Actually,
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Figure 7. Instantaneous vortical structures at ReD = 105: (a) D/θ = 50; (b) 80; (c) 120;
(d) 180. Shown here are the iso-surfaces of pressure, p/ρU 2

J = −0.03.

Villermaux (1998) investigated the instability characteristics of viscous shear layer roll-
up in a mixing layer and showed that the shear layer roll-up has a lower frequency at
low Reθ than the inviscid one and then exhibits the inviscid feature with increasing
Reθ . On the other hand, as shown in figure 10(a), the shear layer mode frequency
obtained from previous experiments is lower (Stθ ≈ 0.012) than Stθ = 0.017 predicted
by the inviscid analysis. According to Zaman & Hussain (1981), Stθ = 0.017 is
the frequency corresponding to the disturbances with maximum growth rate inside
the shear layer, whereas Stθ = 0.012 is the one corresponding to the disturbances
with maximum growth. They detected Stθ = 0.012 because the disturbances with
maximum growth become larger than those with maximum growth rate as the
jet goes downstream. Husain & Hussain (1995) mentioned that the dominance of
the disturbances with maximum growth over those with maximum growth rate is
attributed to the feedback mechanism from rolled-up vortices towards the jet exit.
However, as shown in figure 10(a), the relatively lower value of Stθ = 0.012 than
Stθ = 0.017 seems to be mainly due to the lower Reθ (∼O(100)) considered in their
experiments. Thus, further experiments at high Reθ are required to resolve this issue.
On the other hand, the shear layer mode frequency normalized with the jet diameter
shows much scattered behaviour (figure 10b), indicating that the jet diameter is not
a proper length scale explaining the shear layer instability near the jet exit.
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Figure 8. For legend see next page.

Figure 11(a) shows the variations of the characteristic frequency corresponding to
the jet-preferred mode with the Reynolds number for different initial momentum
thicknesses. The jet-preferred-mode frequency is obtained to be the peak frequency
in the energy spectrum of the axial velocity fluctuations at x/D = 4 on the jet
centreline. As shown in figure 11(a), the jet-preferred-mode frequency ranges from
StD = f D/UJ ≈ 0.3 to 0.6 agreeing with the previous results (Gutmark & Ho
1983; Ho & Huerre 1984). This wide range of the characteristic frequency has been
attributed to different inflow conditions (Gutmark & Ho 1983). On the other hand,
it was mentioned in Ho & Huerre (1984) that with increasing Reynolds number (or
with decreasing initial momentum thickness) the frequency of the jet-preferred mode
increases and then approaches a constant value of about 0.42 (Drubka 1981) or 0.45
(Kibens 1981). These results suggest that the jet-preferred mode may be associated
with the development of the shear layer characterized by the initial momentum
thickness (Gutmark & Ho 1983).

In Crighton & Gaster (1976) and Petersen & Samet (1988), the jet-preferred mode
was treated as the shear layer mode which becomes unstable near the end of the
potential core (i.e. at x/D � 4), thus being scaled with the local momentum thickness
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Figure 8. Mean axial velocity along the centreline: (a) ReD = 100; (b) 3600; (c) 104; (d) 105.
———, D/θ = 50; – – – –, 80; · · · · · · ·, 120; — · —, 180; ◦, �, 	, Russ & Strykowski (1993)
(D/θ � 48, 86 and 110, respectively, for ReD = 104 and uJ � 0.001UJ ); �, Zaman & Hussain
(1981) (D/θ � 120 for ReD ≈ 2 × 104 and uJ � 0.003UJ ); •, Cho et al. (1998) (D/θ � 200 for
ReD ≈ 2 × 104 and uJ � 0.003UJ ); +, Crow & Champagne (1971) (D/θ ≈ 600 for ReD � 105

and uJ � 0.003UJ ).

of the shear layer (θs) and the local centreline velocity (Uc) at that position. Crighton &
Gaster (1976) showed from a theoretical approach that f θs/Uc � 0.054, and Petersen
& Samet (1988) reported from their experiment that f θs/Uc � 0.063. In figure 11(b),
when the local Reynolds number (Rel = Ucθs/ν at x/D = 4) is small, the frequency
corresponding to the jet-preferred mode normalized by θs and Uc is smaller than 0.054
or 0.063. However, when the local Reynolds number becomes large (Rel > O(103)),
the jet-preferred-mode frequency shows a reasonable agreement with their values
(figure 11b) although it is much higher for the cases of ReD = 104 and D/θ = 180
and ReD = 105 and D/θ = 120. The result shown in this figure indicates that when the
local Reynolds number is large, the coherent structures may be understood as a kind
of the shear layer mode as argued by Crighton & Gaster (1976) and Petersen & Samet
(1988). On the other hand, concerning the jet-preferred mode existing distinct from
the shear layer mode (Jendoubi & Strykowski 1994), a caution should be given to the
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study of the variation of jet-preferred-mode frequency with the inflow conditions. In
the context of the hydrodynamic stability theory, the jet-preferred mode is understood
as a global mode of marginally stable flow that is sensitive to external forcing (Huerre
& Monkewitz 1990). So, when a certain disturbance is close to the receptivity band
of the jet, the corresponding mode may be amplified rather than the jet-preferred
mode (Hussain 1986). As a typical example, when the jet-preferred-mode frequency is
near to that corresponding to the nth pairing of an initial shear layer instability, the
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coherent structure may result from subharmonic sequence starting at the jet nozzle
instead of the jet-preferred mode. In the present study, the cases of D/θ = 50 and 80
at ReD = 104 belong to this situation. Since the detail of background disturbances
at the jet exit affects whether coherent structures result from the pairing of an initial
shear layer instability or not, it is difficult to seek truly universal scaling of the jet-
preferred mode. Therefore, further studies with control of background disturbances
should be conducted to resolve this issue. In this respect, studies on excited jets may
provide some directions towards the universal scaling of the jet-preferred mode, as
suggested by Hussain & Zaman (1981) and Hussain (1986).

3.3. Mode analysis

The vortical structures in a jet can be decomposed into disturbances corresponding
to Fourier components with the azimuthal wavenumbers m. The disturbances
corresponding to m = 0, 1 and 2 are called axisymmetric (mode 0), helical (mode 1)
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and double-helix (mode 2) modes, respectively. Batchelor & Gill (1962) first analysed
the dominant azimuthal modes of a structure existing in a circular jet and showed
that all azimuthal modes become theoretically unstable near the jet exit but mode 0
grows fastest, whereas past the potential core only mode 1 is unstable. The dominance
of mode 1 past the potential core was also predicted by Michalke & Hermann
(1982). Then, Cohen & Wygnanski (1987) and Raman, Rice & Reshotko (1994)
experimentally measured properties of each modal structure such as the amplification
rate and the relative amplitude in the region close to the shear layer. Their results were
consistent with those of the previous theoretical studies. Recently, Jung, Garmard &
George (2004) and Gamard, Jung & George (2004) argued that mode 0 has the largest
energy only in the near-field region and mode 2 is the dominant mode of coherent
structures in the downstream location (x/D � 6). The difference among these previous
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Figure 12. Growth of the integrated energy of axial velocity fluctuations along the axial
direction at ReD = 3600: (a) D/θ = 50; (b) 80; (c) 120; (d ) 180. ———, mode 0; – – – –, mode
1; · · · · · · ·, mode 2; — · —, mode 3.

results has not been clearly resolved. It may be associated with different Reynolds
numbers and jet initial conditions adopted in the previous studies, because they
significantly change the vortical evolutions as shown in the present study. Therefore,
it should be interesting to see how these modes evolve downstream depending on the
initial momentum thickness and Reynolds number using the present simulation data.

Figures 12–14 show the energy of the axial velocity fluctuations integrated over

0 � r � 2D at each azimuthal mode, Ẽ(x, m)(=
∫ 2D

0
E(x, r, m)rdr), for different initial

momentum thicknesses at ReD = 3600, 104 and 105, respectively. As is shown later,
the energy at r/D > 2 is almost zero, so its contribution is negligible. The energy of
axial velocity fluctuations at each azimuthal wavenumber is obtained from

E(x, r, m) = û′
x(x, r, m, t)û′

x(x, r, m, t)∗
, (3.1)

where û′
x(x, r, m, t) is the Fourier coefficient of axial velocity fluctuations, ∗ denotes

the complex conjugate and the overbar denotes the averaging in time. As shown in
figures 12–14, the evolution of each azimuthal mode along the axial direction depends
on both ReD and D/θ . Near the jet exit, the axisymmetic mode (mode 0) is dominant
regardless of the Reynolds number, but becomes less dominant as D/θ increases. At
ReD = 3600 and D/θ = 50, mode 0 grows gradually in the axial direction. However,
with increasing D/θ , mode 0 has a local peak near the end of the potential core,
and then is almost unchanged or slightly decays. The peak occurs slightly earlier as
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Figure 13. Growth of the integrated energy of axial velocity fluctuations in the axial direction
at ReD = 104: (a) D/θ = 50; (b) 80; (c) 120; (d ) 180. ———, mode 0; – – – –, mode 1; · · · · · · ·,
mode 2; — · —, mode 3.

D/θ increases. With increasing Reynolds number, the dominance of mode 0 near
the jet exit becomes weak, although mode 0 still remains dominant at x/D � 5 for
relatively thick shear rates such as D/θ = 50 and 80 at ReD = 104 and D/θ = 50
at ReD = 105. In particular, for the cases of D/θ = 120 and 180 at ReD = 105,
other modes grow faster than mode 0 even within the potential core, not to mention
further downstream. It is interesting to note that the growth of mode 0 in the axial
direction is significantly suppressed with increasing Reynolds number. The decay of
mode 0 and the growth of higher modes are supported by the fact that the vortex
rings become weak and less organized with increasing D/θ as shown in figures 5–7.

On the other hand, the evolutions of azimuthal modes downstream of the potential
core are more complicated. Nevertheless, overall, mode 2 is dominant in downstream
locations, which agrees with the proper orthogonal decomposition (POD) results of
Freund & Colonius (2002) (ReD = 3600) and Jung et al. (2004) (ReD = 78 400,
117 600 and 156 800). With increasing Reynolds number, however, the dominance of
mode 2 becomes relatively weak as the integrated energies of mode 1 and mode 3
become comparable to that of mode 2. Especially, for the case of D/θ = 50 and
ReD = 105, mode 1 is most dominant in the downstream location (x/D > 5). This
weaker dominance of mode 2 at higher Reynolds numbers can also be found by
comparing the results from Jung et al. (2004) and Freund & Colonius (2002). On the
other hand, the downstream evolutions of modes look similar between D/θ = 120
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Figure 14. Growth of the integrated energy of axial velocity fluctuations along the axial
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and 180 at ReD = 105, indicating that the modal structures are relatively insensitive
to the initial momentum thickness at high Reynolds numbers once the initial shear
layer is sufficiently thin.

So far, we considered the evolution of azimuthal modes of integrated axial velocity
fluctuations (0 � r � 2D). Since the evolution of azimuthal modes significantly
depends on the shear rate of the initial shear layer, we investigate the growth of
azimuthal modes along the shear layer. The profiles of E(r, m) at a few different
axial locations are drawn in figures 15 and 16 for the cases of D/θ = 50 and 180
(ReD = 104), respectively. Near the jet exit, disturbances grow along the shear layer.
For D/θ = 50, mode 0 grows much faster than other modes (figures 15a and 15b).
However, for D/θ = 180, all the modes considered here grow almost simultaneously
near the jet exit. On the other hand, in downstream locations (x/D = 6 and 8), modes
1 and 2 become dominant along the radial direction. More specifically (for example, at
x/D = 8), mode 1 is dominant at 0.2 � r/D � 0.5 ∼ 0.6, whereas mode 2 is dominant
at 0.5−0.6 � r/D � 1−1.5. However, near the centreline, mode 0 is most dominant
even at farther downstream locations. Similar profiles of E(r, m) are also observed
in downstream locations for ReD = 3600 and 105 (not shown here). Therefore, the
characteristics of E(r, m) in downstream locations exhibit the following behaviour
irrespective of the jet inflow condition, i.e. the dominant mode changes from mode 0
near the centreline to mode 1 and then to mode 2 with increasing radial direction. It
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is important to note that the large energy level of mode 2 in downstream locations
observed in figures 12–14 results from the dominance of mode 2 at large r/D (and
thus larger area), implying that the effect of mode 2 on the vortical evolution in view
of the energy integrated over the domain may be overemphasized.
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4. Conclusions
In the present study, the effects of the jet inflow conditions such as the initial

momentum thickness (θ) and the background disturbances on the downstream
evolution of a circular jet were investigated using LES. We considered four different
initial momentum thicknesses, D/θ = 50, 80, 120 and 180, and three different Reynolds
numbers, ReD = UJ D/ν = 3600, 104 and 105, where UJ is the jet inflow velocity and
D is the jet diameter.

The present study showed that the flow characteristics of the circular jet significantly
change with the initial momentum thickness, and the effect of the initial momentum
thickness also depends on the Reynolds number. As a result, the important features of
the jet such as mixing and turbulence intensity were very sensitive to these conditions.
For all the Reynolds numbers considered in this study, the vortex rings were generated
at an earlier axial location with decreasing initial momentum thickness. In the case
of relatively low Reynolds numbers like ReD = 3600, this early growth of shear layer
with decreasing initial momentum thickness generated large-scale coherent structures
in earlier downstream locations, resulting in the mixing enhancement and an increase
in turbulence intensity. However, at a high Reynolds number of ReD = 105, the early
growth of the shear layer led to the occurrence of fine-scale structures through the
saturation of shear layer and resulted in the reduction of mixing and turbulence
intensity with decreasing initial momentum thickness.

The jet initial momentum thickness changed the temporal instability of the jet such
as the shear layer and jet-preferred modes. The shear layer frequency normalized by
the initial momentum thickness and jet inflow velocity increased logarithmically with
the Reynolds number, Stθ ∼ log10 Reθ , and reached near 0.017 predicted from the
inviscid instability theory. Unless D/θ was too small, the shear layer mode frequency
Stθ did not significantly depend on D/θ . On the other hand, the characteristic
frequency corresponding to the jet-preferred mode depended on the Reynolds number
and the initial momentum thickness. When the Reynolds number based on the
centreline velocity and shear layer thickness at x/D = 4 was large enough, the jet-
preferred-mode frequency was reasonably scaled with the local momentum thickness
and the jet-centreline velocity. Therefore, the diversity of the jet-preferred-mode
frequency reported in the literature may be caused by the different evolution processes
of the shear layer depending on the jet inflow conditions.

A mode analysis was conducted to investigate how the disturbances evolve
according to the initial momentum thickness and Reynolds number. In this analysis,
the vortical structures were decomposed into the azimuthal modes. In view of the
energy of the axial velocity fluctuations integrated over 0 � r/D � 2, double-helix
mode (mode 2) became dominant past the potential core, whereas near the jet exit
the axisymmetric mode (mode 0) was dominant. In view of the local energy, the
disturbances grew along the shear layer near the jet exit: for thick shear layer, mode
0 grew much faster than other modes, but modes 0–3 grew almost simultaneously
for thin shear layer. However, past the potential core, the dominant mode changed
from mode 0 near the centreline to mode 1 and then to mode 2 with increasing radial
direction regardless of the initial shear layer thickness.

In the present simulation, we have shown how the downstream evolution of the jet
is affected by the jet inflow conditions characterizing the evolution of the initial shear
layer. One of the conclusions drawn in the present study is that the shear layer and jet-
preferred-mode frequencies, when appropriately non-dimensionalized, have tendencies
to asymptotically approach constant values as the Reynolds number increases. It may
be interesting to see if this conclusion is still valid for ReD > 105 at which the jet
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Figure 17. Instantaneous vortical structures at ReD = 104 and D/θ = 50: (a) uJ /UJ = 0;
(b) 0.001; (c) 0.005; (d ) 0.01. Shown are the iso-pressure surfaces of p/ρU 2

J = −0.03.

inflow boundary layer is turbulent. Hill et al. (1976) and Crighton (1981) mentioned
that the jet characteristics significantly change depending on whether the state of the
jet inflow is laminar or turbulent. Cooper & Crighton (2000) conjectured that the
characteristics of coherent structures may change as the Reynolds number increases
over O(105). Therefore, the instability characteristics in a very high-Reynolds-number
jet should be an important subject to be investigated.

The self-similarity feature of the jet has been regarded as one of the important
issues (Wygnanski & Fielder 1969; Dowling & Dimotakis 1990). An issue that is
not covered in the present study is how the self-similar solution of the jet depends
on the jet inflow conditions. Although there have been a few interesting studies in
this direction such as George (1989), Hussein, Capp & George (1994) and Boersma,
Brethouwer & Nieuwstadt (1998), a systematic investigation on the effect of the jet
inflow conditions, covering wide ranges of the Reynolds number and the jet initial
momentum thickness, on the self-similar solution should be another important topic
to pursue.

This work is supported by the National Research Laboratory Program of the
Korean Ministry of Science and Technology through KOSEF.

Appendix A. Effect of the background disturbance level on the jet evolution
The level of background disturbances at the jet exit is known to play an important

role in the vortical evolution in a circular jet. In this appendix, we examine how the
background disturbance level affects the jet evolution at ReD = 104. We consider two
different initial momentum thicknesses, D/θ = 50 and 180, representing thick and
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Figure 18. Instantaneous vortical structures at ReD = 104 and D/θ = 180: (a) uJ /UJ = 0;
(b) 0.001; (c) 0.005; (d ) 0.01. Shown are the iso-pressure surfaces of p/ρU 2

J = −0.03.

thin shear layers, respectively. For each initial momentum thickness, three different
background disturbance levels, uJ /UJ = 0.001, 0.005 and 0.01, are imposed.

Figures 17 and 18 show the instantaneous vortical structures for different
background disturbance levels at D/θ = 50 and 180, respectively. Without
disturbances, strong axisymmetric vortex rings occur for both thick and thin shear
layers and persist farther downstream. With background disturbances, however,
vortex rings become smaller and less organized. As shown in these figures, both
the background disturbance level and the initial momentum thickness significantly
change the evolution of vortical structures. The influence of background disturbance
level is weaker for D/θ = 180 than for D/θ = 50. For the thick shear layer (D/θ = 50),
vortex rings are generated earlier with increasing disturbance level. On the other hand,
for the thin shear layer (D/θ = 180), vortex rings appear at nearly the same axial
location irrespective of the level of disturbances, suggesting that, for thin shear layer,
small amount of disturbances is enough to trigger the shear layer evolution and the
jet statistics do not change much with the level of disturbances.

Figures 19 and 20 show the variations of the mean axial velocity and r.m.s.
axial velocity fluctuations along the centreline for different background disturbance
levels at D/θ = 50 and 180, respectively. Similar to the vortical structures, the
effect of background disturbance level is more evident for the thick shear layer
(D/θ = 50) than for the thin one (D/θ = 180). Especially, the difference in the mean
velocities with and without background disturbance is much larger at D/θ = 50
than at D/θ = 180. At D/θ = 50, the jet-centreline velocity decays much more slowly
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without the background disturbance than with the disturbance (figure 19a). The r.m.s.
axial velocity fluctuations grow more quickly near the jet exit at higher background
disturbance level, but the fluctuations saturate earlier with the background disturbance
(figure 20a). Note that the r.m.s. value with uJ = 0 becomes very large due to the
large-scale structures existing there. On the contrary, for D/θ = 180 (figures 19b
and 20b), the mean axial velocity and r.m.s. axial velocity fluctuations are very
similar among themselves when background disturbances are provided. Without the
background disturbances, the r.m.s. axial velocity fluctuations become very large in
downstream locations because of the large-scale structures formed there (figure 18a).

Appendix B. Quality of grid resolution and applicability of LES technique
to the study of Reynolds-number dependence

In this appendix, we address the quality of grid resolution adopted in our LES,
and the applicability of LES technique to the study of Reynolds-number dependence.
To check the grid resolution in the axial direction, we increase and decrease the
minimum grid spacing �xmin/D from 0.0167 to 0.0333 and 0.00833, respectively, and
show the results in figure 21(a). As shown, further reduction in �xmin/D does not
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change the solution. The same result is also obtained for the r.m.s. velocity fluctuations
(not shown in this paper). Similarly, we change the grid resolution in the azimuthal
direction and present the results in figure 21(b). Little change is observed even with
doubling the grid spacing, showing the appropriateness of grid resolution adopted
in our simulation. Figure 22 shows the contours of instantaneous νt/ν for different
grid resolutions, where νt = c�2|S̃| is the SGS eddy viscosity, � is the filter width

(grid size), S̃ =
√

2S̃ij S̃ij and c is obtained from a dynamic procedure (Germano

et al. 1991; Lilly 1992). In the case of coarse grid resolution, large values of νt are
observed even very near the jet exit although the initial shear layer is not turbulent.
With proper grid resolution, νt is very small there. Therefore, it is clear that coarse
grids distributed in the initial shear layer region result in unrealistic νt and wrong
evolution of shear layer.

Now, let us discuss the applicability of LES technique to the study of Reynolds-
number dependence. In this paper, we presented the r.m.s. velocity fluctuations
obtained from the resolved velocity fields for three different Reynolds numbers. In
other words, the contribution from SGS velocity fluctuations was not included. Thus,
we examine the magnitude of the SGS kinetic energy to investigate whether or not
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Figure 21. Resolution study for the case of ReD = 104 and D/θ = 180: (a) axial grid
resolution (– – – –, �xmin/D = 0.0333; ———, 0.0167 (original resolution); — · —, 0.00833);
(b) azimuthal grid resolution (– – – –, �φ/2π = 1/64; ———, 1/128 (original resolution);
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neglecting the SGS contribution to the Reynolds stresses is justified. The SGS kinetic
energy may be obtained from the model proposed by Vreman, Geurts & Kuerten
(1994) and Vreman (2004): kτ = 2νt |S̃|. The ratio of SGS kinetic energy to the resolved
kinetic energy averaged over the azimuthal direction and time is shown in figure 23
for ReD = 105 and D/θ = 180. The maximum value is only about 5%, indicating
that the turbulent kinetic energy would be little changed even after the SGS kinetic
energy is included. Figure 24 shows the ratio of SGS kinetic energy to the resolved
kinetic energy averaged over the azimuthal direction from an instantaneous flow field.
The value of this ratio is smaller than 0.2 even for ReD = 105, which implies that
the present LES is well resolved (Pope 2000). The SGS dissipation is obtained from
−τ ij S̃ij and its ratio to the viscous dissipation νS̃ij S̃ij is shown in figure 25. The SGS
dissipation is much larger than the viscous dissipation and becomes more significant
at larger Reynolds number. Therefore, it seems clear with the present grid resolution
that, as the Reynolds number increases, the SGS dissipation becomes much bigger
than the viscous dissipation, but the SGS kinetic energy remains small and thus the
resolved kinetic energy alone properly represents the total turbulent kinetic energy.
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grid resolution; (c) fine grid resolution. Contour levels are from −1 to 3 by increments of 0.5.
Negative values are dashed.
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